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CLOSED-FORM SOLUTIONS OF AN INFINITE BEAM
UNDER IMPACT LOADING
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Abstract—Based on the Euler—Bernoulli equation for the transverse vibration of elastic beams, closed-form
solutions for the transverse displacements and stresses are derived for an infinitely long beam subjected to an
arbitrary (impulsive) displacement input at a given point. The method of solution employs the transform tech-
nique. The solutions are given in terms of Fresnel’s integrals and elementary functions, and thus permit direct
numerical evaluations. An approximate solution is also presented.

1. INTRODUCTION

IN a previous paper [1]| a general method was suggested for decoupling the shear and
bending effects in a Timoshenko beam subjected to a concentrated force impact. It was
demonstrated that a simple shear theory is adequate to predict the peak shear stresses and
an associated Euler—Bernoulli beam theory can be used to predict the bending stresses
for the special case of a semi-infinite beam when a step velocity is suddenly applied at its
free end. This enables one to bypass the extremely tedious analytical and numerical work
attendent upon the use of Timoshenko Beam Theory.

The present paper is concerned with the derivation of closed-form solutions for the
associated bending problem, which is described by the Euler-Bernoulli approximation,
for an infinitely long beam subjected to an arbitrary displacement (or velocity) input at a
given point of the beam. More specifically the displacement input is assumed in the form
of a power series in time. The corresponding shear problem renders no difficulty and is
omitted from the present analysis. We point out here that the experimental results of
Vigness [2] have indicated that the Euler—Bernoulli description is sufficiently accurate in
treating problems of this kind.

A closed-form solution for the case of a suddenly applied step velocity has been previ-
ously derived by Bohnenblust [3], using primarily the theory developed by Boussinesq
several decades ago. In most engineering applications, however, there exists always a
finite duration of time during which the beam is accelerated in order to attain a certain
velocity. The present formulation of assuming a suddenly applied displacement in the
form of a power series in time considers this transient state and includes the Bohnenblust
solution as a special case. The method of solution employs the more direct transform tech-
nique. A set of integrals, which are expressed in terms of Fresnel integrals and elementary
functions, is generated for obtaining closed-form solutions.

2. FORMULATION OF BENDING PROBLEM

We consider an infinitely long beam, occupying the space —oo < x < oo, which
is assumed at rest at zero time (¢ = 0). At a time greater than zero the location x = 0 is
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forced to move, and the displacement at x = 0 is assumed to be described by a power series
in time. By the symmetry property of the beam it is only necessary to consider the part of
the beam which occupies 0 < x < oo with an additional constraint that the slope vanishes
atx = 0.

The Euler-Bernoulli equation for the transverse displacement y of the beam with
constant cross-sectional area A4, moment of inertia I, mass density p, and Young’s modulus
Eis:

—S+at—= =0 (1)

where a®? = El/pA.
The initial and boundary conditions are respectively:

Oy

=E=O when t=0,x>0 )
N
y=Y at" at x=0 for >0 (3)
n=1
6_y= at x=0 for >0 4)
ox

In equation (3) the coefficients a, are known constants with a; = V and N is an arbitrary
positive integer.
Let

%y
—=F1 at x=0 for t>0 (5)
0x

where F(t) is an unknown function of time and is related to the bending moment at the
origin through the equation

M(0, t) = EIF(2).
Then, the Fourter transform [4, p. 114]

213~
Y= (—) j‘ y(x, t) sin(éx) dx 6)
n 1]
must satisfy
d2 5 N .
ezt a?&tY = | = azf{éz > a,.t"—F(t)}- (7)
By equation (2) n=1
Y=%=O when ¢ =0. 8)

The solution of equation (7) satisfying equation (8) is found to be [4, p. 115]

Y=(2 j {é Z an ——F(n }sinaéz(t—n)dn.
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By the inversion theorem,

y=

PALN
—) j~ Y sin(éx) d¢&,
n

0

and, on substituting Y into the above expression and integrating with respect to #, we
obtain

= 5 a2 Lsineze
y_zan ; ésnlx la)

n=1 0
- [Ez(t’ f) - E3(!9 5)] cos aizt
—[Z41, )= Z4(t, &)] sin al’1} d€

—ggj' J 1sin ExF(n) sin a?(t —n) dn dé& 9)
TJo 06
where
N/2
21,8 = Y (—1yH®™(a?) 2"
n=1
N2 pp(2m) n
(8 = Z (at?)~ 2 Z (= 1y"2n(2n—1)...(2n—2m+ 1)(a&?1)>"~ 2"
n=1 (2")' m=1
¥ _ N2 H(Zn—l) 2y—(2n—-1) nil _1)m2 _1) n—2 262t)2n—2m—1
(49 —";m(aé ) m=1( (2n—1)...(2n—2m)(
N/2 py(2n) n
T8 = Z (aE?)~2n Z (=1)™2n(2n—1)...(2n—=2m+2)(2&%ty*"2m+1
n=1 (271)' m=1
N/2 py(2n—1) n
Iy, 8) = ,.;1 =) (ag*)~3»—D m; (=1y"2n—1)...(2n~2m+1)(a&?r)*" 2",
with the notation
N
H=Y az,
n=1
d"H
) _ ~ "~
="

Here we have assumed, without loss of generality, that N is an even integer. (If N is odd,
one simply adds one more term ay . t* *! to the power series withay, ; = 0.)

The integrals in equation (9) can be shown to be uniformly convergent with respect to
x for 0 £ x £ M, M being a constant. Now, when we apply equation (4) to equation (9),
the unknown function F(t) is found to satisfy the Abel integral equation

" Fln)
dn =
L Ja—m"

8\t [
) j {Z4(t, &)—cos al[Z,(1, &)

na 0

—Z4(t, §)] —sin al?[Z4(t, &) — Z4(1, &)1} dL. (10)
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Hence, [5]

8 * d t 0
F() = (T) d_ij J {Z4(n, &) —cos a*n[Z,(n, £)—Z;(n, £)]
ov o

a

d
—sin a&?n[Z,(, &)—Zs, &) \/é i (1n

Knowing the function F{¢), equation (9) can then be integrated to give the transverse
displacement y. The integration process, in general, is cumbersome, but nevertheless
closed-form solutions are always obtainable for a given value of N.

3. CLOSED-FORM SOLUTION FOR N =2
For N = 2, we find
T, =X, = —2a,af*)"?
;=0
T, = —2a,Hal?)!
s = —(a;+2a,t) (@)™,

Substituting the above expressions into equation (11) and integrating, we obtain

F(t) = —%(a1 +2a,t) (12)

Equation (9) becomes then

2 2 0
y=13 a,,t"+EJ sin Cx{ E,(l—cosafzt-—sm at?t)
0]

n=1

2265(cosaézt—sm a€2t+aézt—1)} dé, (13)

The integral on the right hand side of equation (13) can be simplified to give

y = a;t{1 = 1,(z) = I,(2)} + apt*{1 + I5(2) + 1 ()} (14)
where
1,(z) = (1—-nz*)S(z)—(1 +n22)C(z)+7rzz—z[cos gZZ) —sin gzzﬂ

I,(z) = (1 +7z3)8(z)+(1 — nzz)C(zH—z[cos(gf) + sin(gz

il
I5(z) = %{(nzz“ +6mz3 —3)C(z)+ (n?z* — 6mz% —3)S(z2)

— 7t224}

+(nz3 —-5z) cos(T—zrz2 ~(nz* 4 5z) sin gzz
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1,(2) = %{(n224+ 6mz% —3)S(z) — (n?z* — 6mz2 — 3)C(z2)

gzz) —67122}

+(nz3 4 5z) cos gzz +(nz®—5z) sin

22 = x?[2nat

C(2) =j cos(gnz) dn

[y}

S(z) =j sin Enz) dn.
R 2

C(z) and S(z) are noted to be the Fresnel integrals whose values are tabulated in standard
tables [6]. The integration process is described in the Appendix.
Uting the same integration process similar closed-form solution of equation (9) for
N = 4 can also be generated.
The bending stress o is given by
oty
o = Eh 72

where h denotes the distance, measured perpendicular to the neutral plane of the most
remote surface point. By differentiating equation (15) twice, one finds

= Ejh{al[zc(z)—ll—zazt[l+Il(z)—12(z>1}- (15)

4. ALTERNATIVE FORMULATION FOR N = 4 AND DISCUSSION

Conceptually the above formulation can be carried out for any given value of N.
The analysis, however, becomes more and more involved as the value of N increases. An
alternative formulation is therefore presented to approximate the solution for N = 4,
using the solution obtained in the previous section.

The solution for the case of a, # 0 and all other a, = 0 describes the behavior of the
beam when subjected to a constant acceleration input at a given point. The velocity there-
fore is increasing linearly with time. By a proper superposition of this solution with
various values of a, at various times one can obtain an approximate solution for a much
more general velocity input. In general, a given velocity, which is a function of time, can
be approximated by finite number of straight lines as shown in Fig. 1. If we denote y,(x, 1),
m=0,1,2..., to be the solution for a, =  tan 6,,, where 6,, is defined in Fig. 1, the solu-
tion for the polygonal velocity input is given by

VX, 1) = yo(x, 1) for 0<t<t,
(16)

n

= yO(x’ t)_ Z ym(xat_tm) for -1 <1 é L,
1

m=
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FiG. 3. Nondimensional bending stress.

As a special case of n = 1 and 6, = 6, one obtains the solution when a given velocity is
applied to the beam at a prescribed rise time. In particular the bending stress for this case
is given by

2Eha,t
6= —
a

(1+1,(2)—1,(2)] forO0 <t <y,

an
2B 1 4 1) L@~ (= )+ L)~ Lzl for > 1,

ll

where z, = x/,/[2na(t—1,)].

For a, # 0and all other a, = 0 the present solution reduces to that of Bohnenblust [3]
for the case of a constant velocity applied to the beam at x = 0. Hence, the Bohnenblust
solution has been rederived from a more direct transform technique without any a priori
assumptions on the functional form of the beam displacement.
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The non-dimensional displacements and stresses for the two special cases of a, # 0,
and a, # 0 are plotted respectively in Figs. 2 and 3.
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APPENDIX
We consider the integrals {4, p. 112]
1\ ” x2 x2
(ﬂ) JO cos £2b cos Ex dE = 4b*} cos b+s1n 4b)
14? 2 1 x? x2
. sin ¢ bcosfxdé— =S cos X —sin X (18)
I j o 3 4b 4b
If the above equations are integrated with respect to x, from O to x, one finds
o0 2 .
cos a¢ tsméxdézg C(2)+5(z (19)
0 < 2
¢} . 2 .
j sin dctsin éx ct S0 CX g = ;[C(z)—S(zﬂ . (20)
0

The integrations are legitimate because the improper integrals are uniformly convergent
with respect to x when 0 £ x £ M < o0, M being a constant. Equation (19) has been
previously derived in [1].

In order to integrate equation (19), we recall that

* sin &x n
_=r 21
j‘o : dé¢ 5 for x>0 (21)

and write equation (19) in the form

o . 24
J mexieosss 1= e - Zic)+5@)-1) @
0

Equations (20) and (22) can now be integrated twice with respect to x, from 0 to x, which
results

& d¢ =5~ L) (23)

[o 0] . - 2
J s1n£x€s;naétd§=£a_t12() 24)
0

Jx sin Ex(cos at?t—1) nat
[¢]
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Again, using equation (21), equation (24) can be rewritten as

0 _» : 24 2
J’ sin ix(smgaé t—al’t) de = " 1,2~ 1. (25)

T2
Integrating with respect to x twice, from 0 to x, we obtain

o . 214 2,2
J sin éX(CO;Saé t )dg = na4t I4(z) 26)
0
o . 2, o 2 2,2
sin ¢x(al ‘5 sin ac”t) de =" 1. 27
0 6 4

Equation (25) can still be integrated with respect to x, but equation (24) must be properly
adjusted to assure that the result of integration exists. Continuing the process of integration,
it is possible to generate integrals whose integrants involve 1/¢7 or higher. These integrals
will be needed in finding the closed-form solution for N = 4.
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Résumé—Basés sur I'équation d’Euler-Bernoulli pour la vibration transversale de poutres élastiques, des solu-
tions A formule fermée pour les déplacements et les tensions transversales sont dérivées pour une poutre infiniment
longue soumise 4 un déplacement arbitraire (impulsif) en un point donné. La méthode de résolution employe
la technique des transformations. Les solutions sont données par les intégrales de Fresnel et les fonctions
¢lémentaires, et permettent ainsi de faire des évaluations numériques directes. Une solution approximative est
aussi présentée.

Zusammenfassung—Auf Grund der Euler-Bernoulli’schen Gleichung fiir die Querschwingung elastischer Balken,
werden Losungen geschlossener Form abgeleitet fiir die Querverdringungen und Spannungen eines unendlich
langen Balkens der in einem gegebenen Punkt einer willkithrlichen pldtalichen Verschiebung ausgesetzt wird.
Die Losungsmethode verwendet Transformationmethoden. Die Losung wird als Fresnel’sches Integral und
Elementarfunktion gegeben, was die direkte numerische Auswertung ermdglicht. Eine Anndherungsldsung
wird auch gegeben.

A6crpakT—Ha ocHose ypasreHus Jitnepa-BepHyuu ans nonepeunsix konebaunit ynpyroi 6anku, npen-
JIaraeTcsi pelieHWe B 3aMKHYTOM BHJE IS TIONEPEYHBIX NEPEMEIICHHM M HANPSXKeHHA B OECKOHEYHO
JUTHHHO#R Oarike, MogBepkeHHON IPOU3BOJIBHLIM (MMITYILCHBIM) BBOAOM NEPEMENICHNS B 3aJaHHOM TOUKE.
MeTopn peiieHHst OCHOBAaH Ha TeXHUKe Npeobpa3oBanus. 3aqaya PeliaeTcss B BUAE MHTErpaioB dpeHena u

3/IEMEHTAPHBIX QYHKIMHA, YTO MPUBOOWT X MPOCTHIM YHCIOBBIM pacdeTaM. JIAIOTCK ToXe NPUGIHKEeHHOe
pelIenne.



