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CLOSED-FORM SOLUTIONS OF AN INFINITE BEAM
UNDER IMPACT LOADING
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Abstract-Based on the Euler-Bernoulli equation for the transverse vibration of elastic beams, closed-form
solutions for the transverse displacements and stresses are derived for an infinitely long beam subjected to an
arbitrary (impulsive) displacement input at a given point. The method of solution employs the transform tech
nique. The solutions are given in terms of Fresnel's integrals and elementary functions, and thus permit direct
numerical evaluations. An approximate solution is also presented.

1. INTRODUCfION

IN a previous paper [I J a general method was suggested for decoupling the shear and
bending effects in a Timoshenko beam subjected to a concentrated force impact It was
demonstrated that a simple shear theory is adequate to predict the peak shear stresses and
an associated Euler-Bernoulli beam theory can be used to predict the bending stresses
for the special case of a semi-infinite beam when a step velocity is suddenly applied at its
free end. This enables one to bypass the extremely tedious analytical and numerical work
attendent upon the use ofTimoshenko Beam Theory.

The present paper is concerned with the derivation of closed-form solutions for the
associated bending problem, which is described by the Euler-Bernoulli approximation,
for an infinitely long beam subjected to an arbitrary displacement (or velocity) input at a
given point of the beam. More specifically the displacement input is assumed in the form
of a power series in time. The corresponding shear problem renders no difficulty and is
omitted from the present analysis. We point out here that the experimental results of
Vigness [2] have indicated that the Euler-Bernoulli description is sufficiently accurate in
treating problems of this kind.

A closed-form solution for the case of a suddenly applied step velocity has been previ
ously derived by Bohnenblust [3 J, using primarily the theory developed by Boussinesq
several decades ago. In most engineering applications, however, there exists always a
finite duration of time during which the beam is accelerated in order to attain a certain
velocity. The present formulation of assuming a suddenly applied displacement in the
form of a power series in time considers this transient state and includes the Bohnenblust
solution as a special case, The method of solution employs the more direct transform tech
nique. A set of integrals, which'are expressed in terms of Fresnel integrals and elementary
functions, is generated for obtaining closed-form solutions.

2. FORMULATION OF BENDING PROBLEM

We consider an infinitely long beam, occupying the space - 00 < x < 00, which
is assumed at rest at zero time (t = 0). At a time greater than zero the location x = 0 is
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forced to move, and the displacement at x = 0 is assumed to be described by a power series
in time. By the symmetry property of the beam it is only necessary to consider the part of
the beam which occupies 0 ~ x < 00 with an additional constraint that the slope vanishes
at x = O.

The Euler-Bernoulli equation for the transverse displacement y of the beam with
constant cross-sectional area A, moment of inertia I, mass density p, and Young's modulus
E is:

where a2 = E1jpA.
The initial and boundary conditions are respectively:

oy
y = - = 0 when t = 0, x ~ 0ot

N

Y = L antn at x = 0 for t > 0
n= 1

(1)

(2)

(3)

oy = 0
ox at x = 0 for t > O. (4)

In equation (3) the coefficients an are known constants with a 1 = V and N is an arbitrary
positive integer.

Let

at x = 0 for t > 0 (5)

where F(t) is an unknown function of time and is related to the bending moment at the
origin through the equation

M(O, t) = E1F(t).

Then, the Fourier transform [4, p. 114]

Y = (~rJ: y(x, t) sin(~x)dx

must satisfy

(6)

By equation (2)
(7)

dY
Y = Cit = 0 when t = O.

The solution of equation (7) satisfying equation (8) is found to be [4, p. 115]

Y = (~raJ~{~ ntl an"" -~F(rll }sin a~2(t-,,)d".

(8)
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By the inversion theorem,

609

y = (~rJ~ Ysin(~x)d~,

and, on substituting Y into the above expression and integrating with respect to rJ, we
obtain

N 2 foo 1
Y = L antn+- y:sin ~X{1:1(t,~)

n= 1 1t 0"

- [1: z(t, ~) -1:3(t, ~)] cos aet

-[1:4(t, ~)-1:5(t, ~)] sin a~Zt} d~

- ~af~f~} sin ~xF(rJ) sin a~z(t-rJ) drJ d~

where

NIZ
1:1(t,~) = L (_l)nH(Zn)(a~Z)-zn

n= 1

NIZ H(Zn) n

1:z{t,~) = I -2-(a~Z)-zn L (-1)"'2n(2n-1) ... (2n-2m+l)(a~Zt)zn-zm
n=1 ( n)! m=1

NIZ H(Zn- 1) n- 1

1:3(t,~) = L (a~Z)-(Zn-l) I (-l)m(2n-l) ... (2n-2m)(2et)Zn-Zm-l
n =Z (2n -1)! m = 1

NIZ H(Zn) n

1:4(t,~) = L _(a~Z)-Zn L (-1)"'2n(2n-l) ... (2n-2m+2)(2et)Zn-Zm+ 1

n=1 (2n)! m=1

NIZ H(Zn-l) n

1:5(t,~)= L I(a~z)-(Zn-l) I (-lr(2n-l) ... (2n-2m+l)(a~2tfn-Zm,
n=d2n-l). m=1

with the notation

(9)

H(n) = dnH

dtn •

Here we have assumed, without loss of generality, that N is an even integer. (If N is odd,
one simply adds one more term aN+ ltN+ 1 to the power series with aN+ 1 = 0.)

The integrals in equation (9) can be shown to be uniformly convergent with respect to
x for 0 ~ x ~. M, M being a constant. Now, when we apply equation (4) to equation (9),
the unknown function F(t) is found to satisfy the Abel integral equation
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Hence, [5J
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(11 )

(
8 )t d ft fooF(t) = n3a dt 0 0 {L t('7, ~)-cos a~2'7[L2('7, ~)-L3('7, m

- sin a~2'7[L4('7, ~) - Ls('7, ~)]} J(;~:)

Knowing the function F(t), equation (9) can then be integrated to give the transverse
displacement y. The integration process, in general, is cumbersome, but nevertheless
closed-form solutions are always obtainable for a given value of N.

3. CLOSED-FORM SOLUTION FOR N = 2

For N = 2, we find

L t = L 2 = -2az(a~z)-Z

L 3 = 0

L4 = -2azt(a~z)-t

Ls = -(at +2azt)(a~Z)-1.

Substituting the above expressions into equation (11) and integrating, we obtain

Equation (9) becomes then

y = f antn+~foo sin ~x{ a;3(1-cos a~Zt-sina¢Zt)
n= 1 n 0 a..

+ :za¢~ (cos a¢Zt - sin a¢Zt +a¢Zt-l)} d¢.

The integral on the right hand side of equation (13) can be simplified to give

where

I t (z) = (l-nz z)S(z)-(1 +nz2)c(z)+nzZ-z[cos(izZ) -sin(izz)]

l z(z) = (1 +nzZ)s(z)+(l-nzZ)C(z)+z[cos(izZ) +sin(izz)]

13(z) = H(n Zz4+6nz3- 3)C(z)+ (n2z4- 6nz z - 3)S(z)

+ (nz3- 5z) cos(~ Zz) - (nz 3 +5z) sin(~zZ) _n2z4}

(12)

(13)

(14)
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[4(Z) = H(1r2z4+61rZ2_3)S(Z)_(1r2z4-6nz2-3)C(Z)

+ (nz 3 +5z) cos( ~ Z2) +(nz 3
- 5z) sin(~ Z2) - 6nz 2}

Z2 = x 2/2nat

C(Z) = J: COS(~~2) d~

S(z) = f~ sin(~~2) d~.
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C(Z) and S(z) are noted to be the Fresnel integrals whose values are tabulated in standard
tables [6]. The integration process is described in the Appendix.

U::.ing the same integration process similar closed-form solution of equation (9) for
N ~ 4 can also be generated.

The bending stress (J is given by

where h denotes the distance, measured perpendicular to the neutral plane of the most
remote surface point. By differentiating equation (15) twice, one finds

(15)

4. ALTERNATIVE FORMULATION FOR N ~ 4 AND DISCUSSION

Conceptually the above formulation can be carried out for any given value of N.
The analysis, however, becomes more and more involved as the value of N increases. An
alternative formulation is therefore presented to approximate the solution for N ~ 4,
using the solution obtained in the previous section.

The solution for the case of a2 #- 0 and all other an = 0 describes the behavior of the
beam when subjected to a constant acceleration input at a given point. The velocity there
fore is increasing linearly with time. By a proper superposition of this solution with
various values of a2 at various times one can obtain an approximate solution for a much
more general velocity input. In general, a given velocity, which is a function of time, can
be approximated by finite number of straight lines as shown in Fig. 1. If we denote Ym(x, t),

m = 0, 1,2 ... , to be the solution for a2 = ! tan em, where em is defined in Fig. 1, the solu
tion for the polygonal velocity input is given by

n

= Yo(x, t)- L Ym(x, t-tm) for tn-I < t ~ tn'
m=1

y(X, t) = Yo(x, t) for 0 < t ~ to
(16)
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FIG. I. Given and approximated velocity inputs.
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FIG. 2. Nondimensional displacements.
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FIG. 3. Nondimensional bending stress.
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As a special case of n = 1 and (}o = (}I one obtains the solution when a given velocity is
applied to the beam at a prescribed rise time. In particular the bending stress for this case
is given by

for 0 < t ~ t l

where ZI = x/.J[2na(t-t l )].

For a l =1= 0 and all other an = 0 the present solution reduces to that of Bohnenblust [3]
for the case of a constant velocity applied to the beam at x = O. Hence, the Bohnenblust
solution has been rederived from a more direct transform technique without any a priori
assumptions on the functional form of the beam displacement.
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(18)

(19)

(20)

(21)

The non-dimensional displacements and stresses for the two special cases of a j #- 0,
and a2 #- 0 are plotted respectively in Figs. 2 and 3.
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APPENDIX

We consider the integrals [4, p. 112]

(2~r f~ cos ~2b cos ~x d~ = 4~t (cos :;+ sin :;),

(21nrJ: sin ~2b cos ~x d~ = 4~t (cos ~; - sin ~; ).

If the above equations are integrated with respect to x, from 0 to x, one finds

J~ cos a~2; sin ~x d~ = ~ [C(Z)+S(Z~

J~ sin a~2; sin ~x d~ = ~ [C(Z)-S(Z~.

The integrations are legitimate because the improper integrals are uniformly convergent
with respect to x when 0 ~ x ~ M < 00, M being a constant. Equation (19) has been
previously derived in [1].

In order to integrate equation (19), we recall that

J00 sin ~x d~ =!: for x > 0
o ~ 2

and write equation (19) in the form

f~ sin ~x(co~ a~2t-l) d¢ = ~[C(z)+S(Z)-l]. (22)

Equations (20) and (22) can now be integrated twice with respect to x, from 0 to x, which
results

(23)

(24)
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Again, using equation (21), equation (24) can be rewritten as

J~sin~X(Sin;ft-a~2t)d~ = n;t[I2(Z)_1].

Integrating with respect to x twice, from 0 to x, we obtain

J

ro sin ~x(cos aet-1) dJ: = na2t2 I ( )
~5 ." 4 3 Z

o

J

ro sin ~x(a~2t;sin aet) d~ = na
2
t
2

1
4
(z).

o ~ 4
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(25)

(26)

(27)

Equation (25) can still be integrated with respect to x, but equation (24) must be properly
adjusted to assure that the result of integration exists. Continuing the process of integration,
it is possible to generate integrals whose integrants involve 1/~7 or higher. These integrals
will be needed in finding the closed-form solution for N ~ 4.

(Received 30 June 1966; revised 9 December 1966)

Resume-Bases sur I'equation d'Euler-Bernoulli pour la vibration transversale de poutres elastiques, des solu
tions aformule fermee pour les deplacements et les tensions transversales sont derivees pour une poutre infiniment
longue soumise a un deplacement arbitraire (impulsif) en un point donne. La methode de resolution employe
la technique des transformations. Les solutions sont donnees par les integrales de Fresnel et les fonctions
elementaires, et permettent ainsi de faire des evaluations numeriques directes. Dne solution approximative est
aussi presentee.

Zusammenfassung-AufGrund der Euler-Bernoulli'schen Gleichung fUr die Querschwingung elastischer Balken,
werden Losungen geschlossener Form abgeleitet fUr die Querverdriingungen und Spannungen eines unendlich
langen Balkens der in einem gegebenen Punkt einer willkiihrlichen plotalichen Verschiebung ausgesetzt wird.
Die Liisungsmethode verwendet Transformationmethoden. Die Liisung wird als Fresnel'sches Integral und
Elementarfunktion gegeben, was die direkte numerische Auswertung ermiiglicht. Eine Anniiherungslosung
wird auch gegeben.

AfiCTpaKT-Ha OCHOBe ypaBHeHRSI 3iUIepa-EepHYJLl1H AJlSl nOnepe'lHbIX KOJle6aHHil: ynpyroil: 6aJIKH, npeA

JlaraeTCSl peIIIeHHe B 3aMKHyToM BRAe AJlSl nOnepe'IHLIX nepeMemeHHil: R HanpSllKeHHil: B 6ecKOHe'IHO

,l:\JlHHHoil: 6aJIKe, nOABeplKeHHoil: npOH3BOJlbHbIM (HMnyJlbCHbIM) BBOAOM nepeMemeHHSI B 3aAaHHoil: TO'lKe.

MeTOA peIIIeHRR OCHOBaH Ha TeXHHKe npeo6pa30BaHHR. 3aAa'la peIIIaeTCR B BRAe HHTerpaJIOB ¢lpeHeJla H

3JleMeHTapHLIX ¢lYHKI.\Hil:, 'ITO npHBOAHT Ie npOCTbIM '1HCJlOBbIM paC'IeTaM. LI:alOTcR TOlKe npH6JlHlKeHHOe
peIIIeHRe.


